Summary

First we consider the result with constant velocity, that is $v(t)=0$. Here we can apply the very strict boundary condition, $\mathrm{x}(\mathrm{t})=0$ is applied. It is possible, because there is no solution for (5) will be obtained. The maximum limit of the missile acceleration command is selected as $100 \mathrm{~m} / \mathrm{s}^{2}$. The Initial missile position is between 10000 m to 3000 m . Initial missile velocity $(0)=400 \mathrm{~m} / \mathrm{s}$, initial missile heading angle $\bar{\psi}=60$ deg. Target position $(0,0) \mathrm{m}$ Desired impact time t will be 37 s . In order to verify the performance of the proposed guidance, secondly we assume that the missile velocity $v(t)$ is $300 \mathrm{~m} / \mathrm{s}$, and the vertical distance 100 m and $\bar{\psi}$ as 5 deg , respectively. The flight time t is chosen as 10 sec .

When we apply a high velocity on a short distance, the lander flies over the landing site shortly after powered descending. when we decrease the initial velocity, it reach the site at 230 s.

