

 Processes can execute concurrently

◦ May be interrupted at any time, partially

completing execution

 Concurrent access to shared data may result in

data inconsistency

 Maintaining data consistency requires mechanisms

to ensure the orderly execution of cooperating

processes

 Illustration of the problem:

Suppose that we wanted to provide a solution to

the consumer-producer problem that fills all the

buffers. We can do so by having an integer counter

that keeps track of the number of full buffers.

Initially, counter is set to 0. It is incremented by

the producer after it produces a new buffer and is

decremented by the consumer after it consumes a

buffer.

while (true) {

/* produce an item in next produced

*/

while (counter == BUFFER_SIZE) ;

/* do nothing */

buffer[in] = next_produced;

in = (in + 1) % BUFFER_SIZE;

counter++;

}

while (true) {

while (counter == 0) ; /* do nothing */

next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

counter--;

/* consume the item in next consumed */

}

 counter++ could be implemented as

register1 = counter

register1 = register1 + 1

counter = register1

 counter-- could be implemented as

register2 = counter

register2 = register2 - 1

counter = register2

 Consider this execution interleaving with “count = 5” initially:
S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = counter {register2 = 5}
S3: consumer execute register2 = register2 – 1 {register2 = 4}
S4: producer execute counter = register1 {counter = 6 }
S5: consumer execute counter = register2 {counter = 4}

 Consider system of n processes {p0, p1, … pn-1}

 Each process has critical section segment of code

◦ Process may be changing common variables, updating table,

writing file, etc

◦ When one process in critical section, no other may be in its

critical section

 Critical section problem is to design protocol to solve this

 Each process must ask permission to enter critical section in

entry section, may follow critical section with exit section, then

remainder section

 General structure of process Pi

1. Mutual Exclusion - If process Pi is executing in its critical section,

then no other processes can be executing in their critical sections

2. Progress - If no process is executing in its critical section and there

exist some processes that wish to enter their critical section, then the

selection of the processes that will enter the critical section next

cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of times that

other processes are allowed to enter their critical sections after a

process has made a request to enter its critical section and before

that request is granted

 Assume that each process executes at a nonzero speed

 No assumption concerning relative speed of the n processes

A solution to the critical section problem must satisfy the following three re

quirements

do {

while (turn !=i);

critical section

turn = j;

remainder section

} while (true);

do {

while (turn !=j);

critical section

turn = i;

remainder section

} while (true);

Pi
Pj

Algorithm 1

Here the problem is even if a process not wishes to be in i

ts critical section, it gets a turn and blocks other processe

s to enter to their critical section

 Process Pi

repeat

flag[i] := true;
while (flag[j]);

critical section

flag [i] := false;

remainder section

until false;

 Satisfies mutual exclusion, but not
progress requirement.

Algorithm 2

 Process Pj

 repeat

flag[j]:= true;
while (flag[i]);

critical section

flag [j] := false;

remainder section

until false;

Problem is both the processes flag m

ay be true and both of them may be i

n a waiting state

Algorithm 3

Peterson’s Solution

do {

flag[i] = true;

turn = j;

while (flag[j] && turn = = j);

critical section

flag[i] = false;

remainder section

} while (true);

 Provable that the three CS requirement are met:

1. Mutual exclusion is preserved

Pi enters CS only if:

either flag[j] = false or turn = i

2. Progress requirement is satisfied

3. Bounded-waiting requirement is met

do {

flag[j] = true;

turn = i;

while (flag[i] && turn = = i);

critical section

flag[j] = false;

remainder section

} while (true);

 Before entering its critical section, process

receives a number. Holder of the smallest number

enters the critical section.

 If processes Pi and Pj receive the same number, if

i < j, then Pi is served first; else Pj is served first.

 Similar to a token system in Bakery

Critical section for n processes

repeat

choosing[i] := true;

number[i] := max(number[0], number[1], …, number [n – 1])+1;

choosing[i] := false;

for (j := 0; j<n; j++)

{

while choosing[j];

while (number[j]  0 and (number[j],j) < (number[i], i));

}

critical section

number[i] := 0;

remainder section

until false;

Structure of process Pi in Bakery Algorithm

((a,b) < (c,d)) if a < c or if a = c and b < d

 Many systems provide hardware support for implementing the

critical section code.

 All solutions below based on idea of locking

◦ Protecting critical regions via locks

 Uniprocessors – could disable interrupts

◦ Currently running code would execute without preemption

◦ Generally too inefficient on multiprocessor systems

 Operating systems using this not broadly scalable

 Modern machines provide special atomic hardware instructions

 Atomic = non-interruptible

◦ Either testandset Or swap instruction

do {

acquire lock

critical section

release lock

remainder section

} while (TRUE);

lock=false // Global

The earlier two

implementations

wont support

bounded wait

 Synchronization tool that provides more

sophisticated ways for process to synchronize their

activities.

 Semaphore S is an integer variable that apart from

initialization can only be accessed through two

indivisible (atomic) operations

◦ wait() and signal()

 Originally called P() and V()

 Definition of the wait() operation

wait(S)

{

while (S <= 0)

; // busy wait

S--;

}

 Definition of the signal() operation

signal(S)

{

S++;

}

 Counting semaphore – integer value can range over an
unrestricted domain

 Binary semaphore – integer value can range only between 0 and 1

 Can solve various synchronization problems

 Consider P1 and P2 that require S1 to happen before S2

Create a semaphore “synch” initialized to 0

P1:

S1;

signal(synch);

P2:

wait(synch);

S2;

 The main disadvantage of earlier mutual

exclusion solutions are their busy waiting.

 Continual looping is a real problem.

 Even though this spinlocks wont make

context switches they are expected to be held

for short time.

 With each semaphore there is an associated waiting queue

 Each entry in a waiting queue has two data items:

◦ value (of type integer)

◦ pointer to next record in the list

 Two operations:

◦ block – place the process invoking the operation on the
appropriate waiting queue

◦ wakeup – remove one of processes in the waiting queue and
place it in the ready queue

 typedef struct{

int value;

struct process *L;

} semaphore;

 Under the classical definition semaphores

cant be negative.

 This implementation makes semaphore

negative and its magnitude is the number of

processes waiting on that semaphore.

 Must guarantee that no two processes can execute

the wait() and signal() on the same semaphore

at the same time

 Thus, the implementation becomes the critical section

problem where the wait and signal code are placed

in the critical section

◦ Could now have busy waiting in critical section

implementation

 But implementation code is short

 Deadlock – two or more processes are waiting indefinitely for an event

that can be caused by only one of the waiting processes

 Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

... ...

signal(S); signal(Q);

signal(Q); signal(S);

 Starvation – indefinite blocking

◦ A process may never be removed from the semaphore queue in which it is

suspended

 Classical problems used to test newly-

proposed synchronization schemes

◦ Bounded-Buffer Problem

◦ Readers and Writers Problem

◦ Dining-Philosophers Problem

 n buffers, each can hold one item

 Semaphore mutex initialized to the value 1

 Semaphore full initialized to the value 0

 Semaphore empty initialized to the value n

 The structure of the producer process

do {

...

/* produce an item in next_produced */

...

wait(empty);

wait(mutex);

...

/* add next produced to the buffer */

...

signal(mutex);

signal(full);

} while (true);

 The structure of the consumer process

Do {

wait(full);

wait(mutex);

...

/* remove an item from buffer to next_consumed */

...

signal(mutex);

signal(empty);

...

/* consume the item in next consumed */

...

} while (true);

 A data set is shared among a number of concurrent

processes

◦ Readers – only read the data set; they do not perform

any updates

◦ Writers – can both read and write

 Problem – allow multiple readers to read at the same time

◦ Only one single writer can access the shared data at the

same time

 Mutex=1 wrt = 1 Readcount =0

