


 Processes can execute concurrently

◦ May be interrupted at any time, partially 

completing execution

 Concurrent access to shared data may result in 

data inconsistency

 Maintaining data consistency requires mechanisms 

to ensure the orderly execution of cooperating 

processes



 Illustration of the problem:

Suppose that we wanted to provide a solution to 

the consumer-producer problem that fills all the 

buffers. We can do so by having an integer counter

that keeps track of the number of full buffers.  

Initially, counter is set to 0. It is incremented by 

the producer after it produces a new buffer and is 

decremented by the consumer after it consumes a 

buffer.



while (true) {

/* produce an item in next produced 

*/ 

while (counter == BUFFER_SIZE) ; 

/* do nothing */ 

buffer[in] = next_produced; 

in = (in + 1) % BUFFER_SIZE; 

counter++; 

} 



while (true) {

while (counter == 0) ; /* do nothing */ 

next_consumed = buffer[out]; 

out = (out + 1) % BUFFER_SIZE; 

counter--; 

/* consume the item in next consumed */ 

} 



 counter++ could be implemented as

register1 = counter

register1 = register1 + 1

counter = register1

 counter-- could be implemented as

register2 = counter

register2 = register2 - 1

counter = register2

 Consider this execution interleaving with “count = 5” initially:
S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1   {register1 = 6} 
S2: consumer execute register2 = counter {register2 = 5} 
S3: consumer execute register2 = register2 – 1  {register2 = 4} 
S4: producer execute counter = register1         {counter = 6 } 
S5: consumer execute counter = register2        {counter = 4}



 Consider system of n processes {p0, p1, … pn-1}

 Each process has critical section segment of code

◦ Process may be changing common variables, updating table, 

writing file, etc

◦ When one process in critical section, no other may be in its 

critical section

 Critical section problem is to design protocol to solve this

 Each process must ask permission to enter critical section in 

entry section, may follow critical section with exit section, then 

remainder section



 General structure of process Pi  



1.   Mutual Exclusion - If process Pi is executing in its critical section, 

then no other processes can be executing in their critical sections

2.   Progress - If no process is executing in its critical section and there 

exist some processes that wish to enter their critical section, then the 

selection of the processes that will enter the critical section next 

cannot be postponed indefinitely

3.  Bounded Waiting - A bound must exist on the number of times that 

other processes are allowed to enter their critical sections after a 

process has made a request to enter its critical section and before 

that request is granted

 Assume that each process executes at a nonzero speed 

 No assumption concerning relative speed of the n processes

A solution to the critical section problem must satisfy the following three re

quirements



do { 

while (turn !=i); 

critical section 

turn = j; 

remainder section 

} while (true); 

do { 

while (turn !=j); 

critical section 

turn = i; 

remainder section 

} while (true); 

Pi
Pj

Algorithm 1

Here the problem is even if a process not wishes to be in i

ts critical section, it gets a turn and blocks other processe

s to enter to their critical section 



 Process Pi

repeat

flag[i] := true;
while (flag[j]);

critical section

flag [i] := false;

remainder section

until false;

 Satisfies mutual exclusion, but not 
progress requirement.

Algorithm 2

 Process Pj

 repeat

flag[j]:= true;
while (flag[i]);

critical section

flag [j] := false;

remainder section

until false;

Problem is both the processes flag m

ay be true and both of them may be i

n a waiting state 



Algorithm 3

Peterson’s Solution

do { 

flag[i] = true; 

turn = j; 

while (flag[j] && turn = = j); 

critical section 

flag[i] = false; 

remainder section 

} while (true); 

 Provable that the three  CS requirement are met:

1.   Mutual exclusion is preserved

Pi enters CS only if:

either flag[j] = false or turn = i

2.   Progress requirement is satisfied

3.   Bounded-waiting requirement is met

do { 

flag[j] = true; 

turn = i; 

while (flag[i] && turn = = i); 

critical section 

flag[j] = false; 

remainder section 

} while (true); 



 Before entering its critical section, process 

receives a number. Holder of the smallest number 

enters the critical section.

 If processes Pi and Pj receive the same number, if 

i < j, then Pi is served first; else Pj is served first.

 Similar to a token system in Bakery

Critical section for n processes



repeat

choosing[i] := true;

number[i] := max(number[0], number[1], …, number [n – 1])+1;

choosing[i] := false;

for (j := 0; j<n; j++)

{

while choosing[j];

while (number[j]  0 and (number[j],j) < (number[i], i));

}

critical section

number[i] := 0;

remainder section

until false;

Structure of process Pi in Bakery Algorithm

((a,b) < (c,d)) if a < c or if a = c and b < d



 Many systems provide hardware support for implementing the 

critical section code.

 All solutions below based on idea of locking

◦ Protecting critical regions via locks

 Uniprocessors – could disable interrupts

◦ Currently running code would execute without preemption

◦ Generally too inefficient on multiprocessor systems

 Operating systems using this not broadly scalable

 Modern machines provide special atomic hardware instructions

 Atomic = non-interruptible

◦ Either testandset  Or swap instruction



do { 

acquire lock 

critical section 

release lock 

remainder section 

} while (TRUE); 



lock=false // Global





The earlier two    

implementations 

wont support 

bounded wait



 Synchronization tool that provides more 

sophisticated ways for process to synchronize their 

activities.

 Semaphore S is an integer variable that apart from 

initialization can only be accessed through  two 

indivisible (atomic) operations

◦ wait() and signal()

 Originally called P() and V()



 Definition of  the wait() operation

wait(S) 

{ 

while (S <= 0)

; // busy wait

S--;

}

 Definition of  the signal() operation

signal(S)

{ 

S++;

}



 Counting semaphore – integer value can range over an 
unrestricted domain

 Binary semaphore – integer value can range only between 0 and 1

 Can solve various synchronization problems

 Consider P1 and P2 that require S1 to happen before S2

Create a semaphore “synch” initialized to 0 

P1:

S1;

signal(synch);

P2:

wait(synch);

S2;



 The main disadvantage of earlier  mutual 

exclusion solutions are their busy waiting.

 Continual looping is a real problem.

 Even though this spinlocks wont make 

context switches they are expected to be held 

for short time.



 With each semaphore there is an associated waiting queue

 Each entry in a waiting queue has two data items:

◦ value (of type integer)

◦ pointer to next record in the list

 Two operations:

◦ block – place the process invoking the operation on the 
appropriate waiting queue

◦ wakeup – remove one of processes in the waiting queue and 
place it in the ready queue

 typedef struct{ 

int value; 

struct process *L; 

} semaphore; 





 Under the classical definition semaphores 

cant be negative.

 This implementation makes semaphore 

negative and its magnitude is the number of 

processes waiting on that semaphore.



 Must guarantee that no two processes can execute  

the wait() and signal() on the same semaphore 

at the same time

 Thus, the implementation becomes the critical section 

problem where the wait and signal code are placed 

in the critical section

◦ Could now have busy waiting in critical section 

implementation

 But implementation code is short



 Deadlock – two or more processes are waiting indefinitely for an event 

that can be caused by only one of the waiting processes

 Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

... ...

signal(S);                 signal(Q);

signal(Q);                 signal(S);

 Starvation – indefinite blocking  

◦ A process may never be removed from the semaphore queue in which it is 

suspended



 Classical problems used to test newly-

proposed synchronization schemes

◦ Bounded-Buffer Problem

◦ Readers and Writers Problem

◦ Dining-Philosophers Problem



 n buffers, each can hold one item

 Semaphore mutex initialized to the value 1

 Semaphore full initialized to the value 0

 Semaphore empty initialized to the value n



 The structure of the producer process

do { 

...

/* produce an item in next_produced */ 

... 

wait(empty); 

wait(mutex); 

...

/* add next produced to the buffer */ 

... 

signal(mutex); 

signal(full); 

} while (true);



 The structure of the consumer process

Do { 

wait(full); 

wait(mutex); 

...

/* remove an item from buffer to next_consumed */ 

... 

signal(mutex); 

signal(empty); 

...

/* consume the item in next consumed */ 

...

} while (true); 



 A data set is shared among a number of concurrent 

processes

◦ Readers – only read the data set; they do not perform 

any updates

◦ Writers   – can both read and write

 Problem – allow multiple readers to read at the same time

◦ Only one single writer can access the shared data at the 

same time

 Mutex=1 wrt  = 1 Readcount =0










